Statistical Likelihood Representations of Prior Knowledge in Machine Learning

نویسندگان

  • Mark A. Kon
  • Leszek Plaskota
  • Andrzej W. Przybyszewski
چکیده

We show that maximum a posteriori (MAP) statistical methods can be used in nonparametric machine learning problems in the same way as their current applications in parametric statistical problems, and give some examples of applications. This MAPN (MAP for nonparametric machine learning) paradigm can also reproduce much more transparently the same results as regularization methods in machine learning, spline algorithms in continuous complexity theory, and Baysian minimum risk methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Voice activity detection based on statistical models and machine learning approaches

The voice activity detectors (VADs) based on statistical models have shown impressive performances especially when fairly precise statistical models are employed. Moreover, the accuracy of the VAD utilizing statistical models can be significantly improved when machine-learning techniques are adopted to provide prior knowledge for speech characteristics. In the first part of this paper, we intro...

متن کامل

Differential Representations of Prior and Likelihood Uncertainty in the Human Brain

BACKGROUND Uncertainty shapes our perception of the world and the decisions we make. Two aspects of uncertainty are commonly distinguished: uncertainty in previously acquired knowledge (prior) and uncertainty in current sensory information (likelihood). Previous studies have established that humans can take both types of uncertainty into account, often in a way predicted by Bayesian statistics....

متن کامل

An overview of Bayesian analysis

This work provides a fairly rigorous yet simultaneously informal introduction to Bayesian analysis intended for those with an understanding of basic probability and interest in machine learning. We cover everything from theoretical aspects of posterior asymptotics to practical considerations in MCMC sampling. This section (Section 1) provides an introduction to the Bayesian approach and the nec...

متن کامل

How to Model Implicit Knowledge? Similarity Learning Methods to Assess Perceptions of Visual Representations

To succeed in STEM, students need to learn to use visual representations. Most prior research has focused on conceptual knowledge about visual representations that is acquired via verbally mediated forms of learning. However, students also need perceptual fluency: the ability to rapidly and effortlessly translate among representations. Perceptual fluency is acquired via nonverbal, implicit lear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005